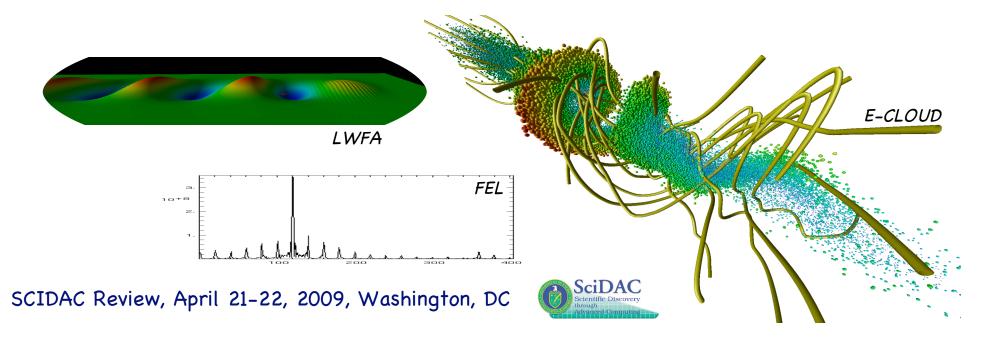
Developing the tools for "boosted frame" calculations.

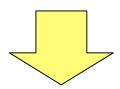

J.-L. Vay*1,4

in collaboration with

W.M. Fawley¹, A. Friedman^{2,4}, M.A. Furman¹, C.G. Geddes*¹, D.P. Grote^{2,4}, S. Markidis^{1,3,4}

¹Lawrence Berkeley National Laboratory, CA ²Lawrence Livermore National Laboratory, CA ³University of Illinois, Urbana-Champaign, IL ⁴Heavy Ion Fusion Science Virtual National Laboratory

*Scidac funded Leverage from institution, LARP, LDRD and SBIR funding.

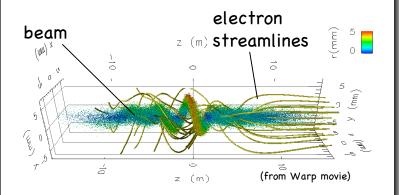


Concept

- # of computational steps grows with the full range of space and time scales involved
- key observation
 - range of space and time scales is not a Lorentz invariant*

scales as γ^2 in x and t

- the optimum frame to minimize the range is not necessarily the lab frame


Choosing optimum frame of reference to minimize range can lead to dramatic speed-up for relativistic matter-matter or light-matter interactions.

*J.-L. Vay, *Phys. Rev. Lett.* **98**, 130405 (2007)

Calculation of e-cloud induced TMC instability of a proton bunch

- Proton energy: γ=500 in Lab
- L= 5 km, continuous focusing

Code: Warp (Particle-In-Cell)

CPU time (2 quad-core procs):

- lab frame: >2 weeks
- frame with $\gamma^2=512$: <30 min

Speedup x1000

Boris pusher ubiquitous

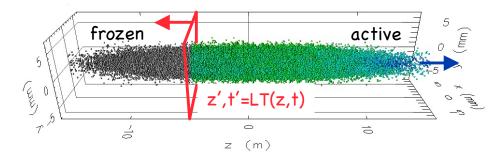
- In first attempt of e-cloud calculation using the Boris pusher, the beam was lost in a few betatron periods!
- Position push: $\mathbf{X}^{n+1/2} = \mathbf{X}^{n-1/2} + \mathbf{V}^n \Delta t$ -- no issue
- Velocity push: $\gamma^{n+1}\mathbf{V}^{n+1} = \gamma^{n}\mathbf{V}^{n} + \frac{q\Delta^{\dagger}}{m} (\mathbf{E}^{n+1/2} + \frac{\gamma^{n+1}\mathbf{V}^{n+1} + \gamma^{n}\mathbf{V}^{n}}{2\gamma^{n+1/2}} \times \mathbf{B}^{n+1/2})$

issue: $E+v\times B=0$ implies E=B=0 => large errors when $E+v\times B\approx 0$ (e.g. relativistic beams).

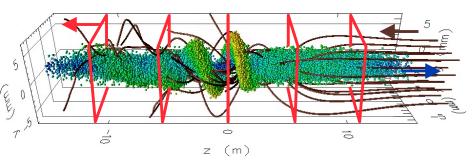
Solution

- Velocity push:
$$\gamma^{n+1}V^{n+1} = \gamma^{n}V^{n} + \frac{q\Delta^{\dagger}}{m} (E^{n+1/2} + \frac{V^{n+1} + V^{n}}{2} \times B^{n+1/2})$$

• Not used before because of implicitness. We solved it analytically*


$$\begin{cases} \gamma^{i+1} = \sqrt{\frac{\sigma + \sqrt{\sigma^2 + 4(\tau^2 + u^{*2})}}{2}} \\ \mathbf{u}^{i+1} = [\mathbf{u}' + (\mathbf{u}' \cdot \mathbf{t})\mathbf{t} + \mathbf{u}' \times \mathbf{t}]/(1+t^2) \end{cases}$$
 (with $\mathbf{u} = \gamma \mathbf{v}$, $\mathbf{u}' = \mathbf{u}^{\mathbf{i}} + \frac{q\Delta t}{m} \left(\mathbf{E}^{i+1/2} + \frac{\mathbf{v}^{i}}{2} \times \mathbf{B}^{i+1/2} \right)$, $\boldsymbol{\tau} = (q\Delta t/2m)\mathbf{B}^{i+1/2}$, $\boldsymbol{u}^* = \mathbf{u}' \cdot \boldsymbol{\tau}/c$, $\sigma = \gamma'^2 - \tau^2$, $\gamma' = \sqrt{1 + u'^2/c^2}$, $\boldsymbol{t} = \boldsymbol{\tau}/\gamma^{i+1}$).

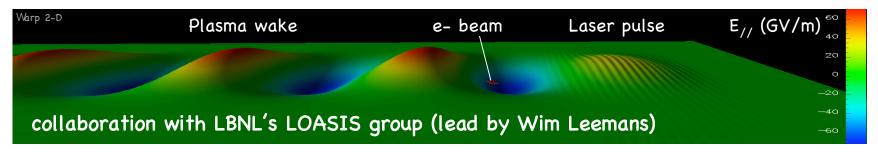
*J.-L. Vay, *Phys. Plasmas* **15**, 056701 (2008)

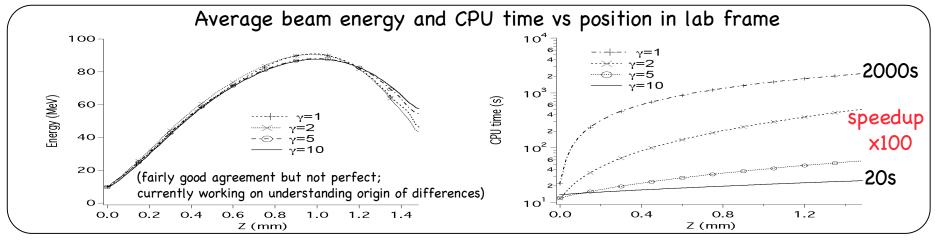


Other complication: input/output

- Often, initial conditions known and output desired in laboratory frame
 - relativity of simultaneity => inject/collect at plane(s) \perp to direction of boost.
- Injection through a moving plane in boosted frame (fix in lab frame)
 - fields include frozen particles,
 - same for laser in EM calculations.

- Diagnostics: collect data at a collection of planes
 - fixed in lab fr., moving in boosted fr.,
 - interpolation in space and/or time,
 - already done routinely with Warp for comparison with experimental data, often known at given stations in lab.




Application to Laser-plasma wakefield accelerators

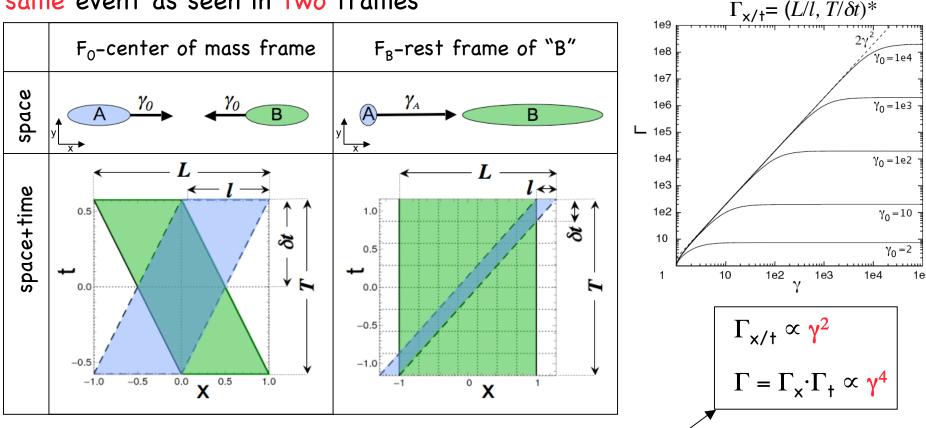
- New electromagnetic solver implemented in Warp (SBIR funding)
 - scaling test (3-D decomp)

# procs	256 (8×8×4)	512 (8×8×8)	1024 (8×8×16)
# cell, particles	1,024 ² ×512, 100M	1,024³, 200M	1,024 ² ×2,048, 400M
Time ratio	1.	1.04	1.12

Applied to modeling of one stage of LWFA (2-D for now, 3-D to follow)

Other accomplishements; future work

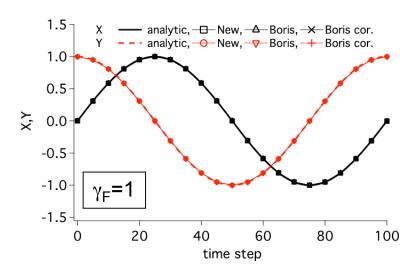
- Accelerator lattice in Warp: added linear maps, boosted frame tracking
 - will apply to e-cloud simulations for SPS, LHC, ILC, etc.
- W. Fawley (LDRD LBNL) applying Warp to numerical study of Free Electron Lasers (FEL) and Coherent Synchrotron Radiation (CSR)
 - detailed benchmarking of FEL physics: spontaneous emission, coherent spontaneous emission, amplifier gain, sideband emission effects of subharmonic bunching, etc.,
 - simulation of CSR: examine transverse size effects normally neglected by theory and computationally prohibitively expensive under normal lab frame E&M calculations.
- Pursue development and detailed algorithmic/physics studies of boosted frame calc. for problems of interest to HEP: LWFA, E-cloud, FEL, CSR, ...
- Apply Warp's novel EM solver with mesh refinement (MR) in lab frame and boosted frame simulations
 - LWFA stage in 3-D: required resolution may vary by more than 2 orders of magnitude in transverse directions. Applying MR:
 - up-to 10⁴ saving on # grid cells for 10 GeV,
 - up-to 10⁸ saving on # grid cells for 1 TeV.

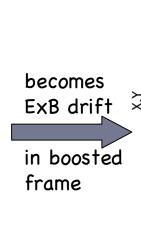


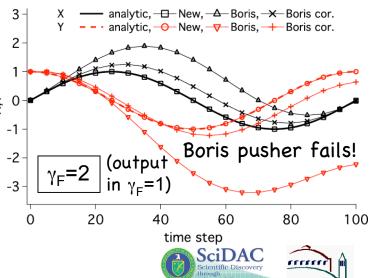
BACKUPS

Range of space and time scale of a simple system two identical objects crossing each other

same event as seen in two frames


- Γ is not invariant under the Lorentz transformation.
- There exists an optimum frame which minimizes ranges.
- For PIC, Vlasov, fluid methods, $cost \propto \Gamma \Rightarrow huge$ penalty if calculation not *J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007) performed in optimum frame!



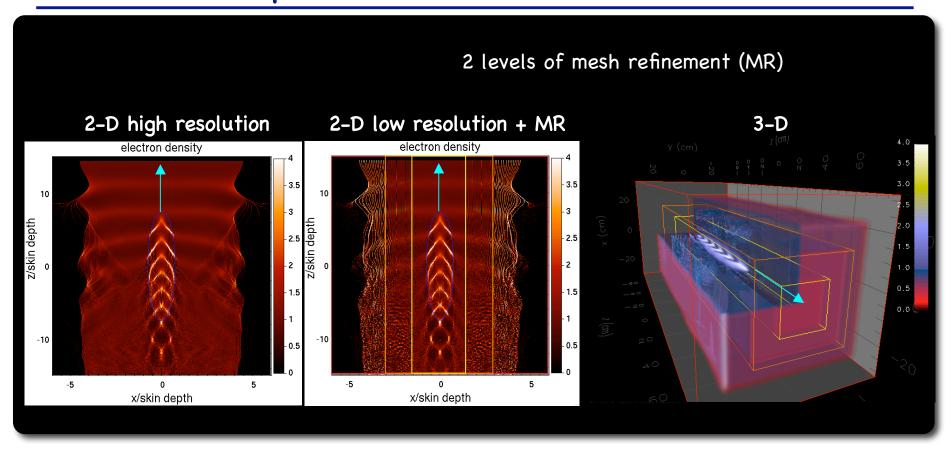


- Boris pusher ubiquitous
 - Position push: $X^{n+1/2} = X^{n-1/2} + V^n \Delta t$ -- no issue
 - Velocity push: $\gamma^{n+1} \mathbf{V}^{n+1} = \gamma^n \mathbf{V}^n + \frac{q \Delta t}{m} (\mathbf{E}^{n+1/2} + \frac{\gamma^{n+1} \mathbf{V}^{n+1} + \gamma^n \mathbf{V}^n}{2 \gamma^{n+1/2}} \times \mathbf{B}^{n+1/2})$
- New pusher*
 - Velocity push: $\gamma^{n+1}V^{n+1} = \gamma^{n}V^{n} + \frac{q\Delta^{\dagger}}{m} (E^{n+1/2} + \frac{V^{n+1} + V^{n}}{2} \times B^{n+1/2})$
- Test one particle in constant B

*J.-L. Vay, Phys. Plasmas 15, 056701 (2008)

Lorentz boosted simulations applied to various problems

- 3-D electron driven TMC instability (Warp-LBNL), x1000
- 2-D free electron laser toy problem (Warp-LBNL), x45,000*/**
- 3-D coherent synchrotron emission (Warp-LBNL), x350*
- 2-D laser-plasma acceleration (Warp-LBNL), x100*
- 1-D laser-plasma acceleration (Vorpal-Tech-X), x1,500


laser-plasma acceleration (Osiris-IST, Portugal) x150 2-D, x75 3-D

**compared to PIC simulation in lab frame. PIC in boosted frame slower than Eikonal codes but allows study of matching ramp and sub-harmonic bunching which are not accessible to Eikonal codes.

Other applications: astrophysics,...?

^{*}estimated

Electromagnetic MR simulation of beam-induced plasma wake with Warp

There simulations used the same time steps for all refinement levels.

The implementation of separate time steps for each refinement level is underway.